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Viscous flow in a cylindrical tube containing 
a line of spherical particles 

By HENRY WANGT AND RICHARD SKALAK 
Department of Civil Engineering and Engineering Mechanics, 

Columbia University, New York 

(Received 3 September 1968 and in revised form 14 November 1968) 

The viscous, creeping flow through a cylindrical tube of a liquid, which contains 
rigid, spherical particles, is investigated analytically. The spheres are located 
on the axis of the cylinder and are equally spaced. Solutions are derived for 
particles in motion and fixed, with and without fluid discharge. Numerical 
results are presented for the drag on each sphere and the mean pressure drop 
for a wide range of sizes and spacings of the spheres. The study is motivated 
by possible application to blood flow in capillaries, where red blood cells re- 
present particles of the same order of magnitude as the diameter of the capillary 
itself. The results may also be of interest in other applications, such as sedimenta- 
tion and fluidized beds. It is shown that there is little interaction between 
particles if the spacing is more than one tube diameter, and that the additional 
pressure drop over that for Poiseuille flow is less than 50 yo if the sphere diameter 
is less than 0.8 of the tube diameter. 

1. Introduction 
The present study was motivated by the possible application of the results 

to blood flow in capillary blood vessels, in which the red blood cells represent 
particles whose diameter is of the same order of magnitude as the diameter of 
the blood vessel itself. Red blood cells are flexible, biconcave disks, but to permit 
analytic treatment they are herein approximated by rigid spheres, 

In  the idealized problem considered (see figure 1)) an infinite row of rigid 
spheres is assumed to be moving in a viscous, incompressible fluid bounded 
by a fixed circular cylinder. The spheres are equally spnced along the axis of 
the cylinder, and the Reynolds number is assumed to be so low that inertial 
terms may be neglected. 

It can be shown that, for creeping flow, the fluid motion for the geometry 
shown in figure 1 is unique for a given velocity of the spheres, U ,  and a given 
discharge, Q (Wang & Skalak 1967). Solutions are derived below for arbitrary 
U and Q, but three subcases are of interest: (i) U = 0, Q + 0, which represents 
flow in a cylindrical tube containing spheres which are each fixed in position; 
(ii) U + 0, Q = 0,  which represents a line of spheres moving in a fluid otherwise 
at rest as in the case of particles settling in a cylinder of fluid; (iii) the case of 
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zero drag on each particle, which is achieved if the fluid and particles are being 
pumped steadily through the tube by a pressure gradient, as is the case in blood 
flow. 

In  cases (i) and (ii), the drag on each particle is different from zero, and there 
is also a mean pressure gradient along the cylinder. By superimposing the two 
cases of non-zero drag in proper proportion, a net drag equal to zero can be 
achieved. Numerical results are given below for all three cases. 

Previous investigators have considered the influence of a cylindrical wall on 
the drag exerted on a single sphere (Haberman & Sayre 1958), but no comparable 
results are available for an infinite line of spheres. A general discussion and 
some numerical results were given by Sonshine & Brenner (1966). The present 
paper gives numerical results for pressure drop and drag for a range of the ratio, 
A, of the sphere radius to the tube radius of 0 < h < 0.9, and a range of sphere 
spacing from the case of adjacent spheres touching up to a maximum spacing 
of forty tube radii. The present paper is complementary to Lighthill (1968), 
which considers elastic particles that nearly fit the tube, using lubrication theory. 

The analytic techniques used in the present paper were suggested by the work 
of Ling (1963) and Atsumi (1960) on problems in the theory of elasticity in- 
volving simiIar geometry, e.g. torsion and tension of a circular bar containing 
an infinite row of spherical cavities. 

0 
Pa Ad Ba - - -  

2. Formulation 
The flows of interest are assumed to be axisymmetric, so that a Stokes stream 

function exists. It is convenient to work in terms of dimensionless (unprimed) 
co-ordinates, which are dehed  in terms of the dimensional (primed) co-ordinates 
(figure 1) by 

R = R'la, x = z'la, r = r'la, (2.1) 

where a is the radius of the cylinder, (R', 2') are cylindrical co-ordinates, and 
(r', 0) are spherical co-ordinates. We assume that the body force, if any, is a 
constant, g, per unit mass, and that it acts only in the axial direction, + z. If the 
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body force acts in a direction other than the axial direction, then the particles 
must be neutrally buoyant in order to remain concentric in the cylinder. The 
present analysis can be applied to this case by setting g = 0. 

The dependent variables of interest are the velocity, V', pressure, p', stress 
tensor, r i j ,  Stokes stream function, $', drag D', and discharge, Q'. These are 
expressed in dimensionless form, using the fluid density and kinematic viscosity, 
p and v, and the tube radius, a, as follows: 

p'a2 a2gz' 
V = aV'/v, p = --- rii = r&a2/pv2, pv= v= ' 

D = D'lpv2, @ = @'/av, Q = Q'lav. I 
In (2.2) the effect of the body force is incorporated in the dimensionless pressure. 
Then the equations of motion and continuity are 

-vp+v=v = 0, 

v.v = 0, 

where V is the gradient operator in dimensionless co-ordinates. Taking the curl 

(2.5) 
of (2.3) gives 

where < is the dimensionless vorticity, V x V. Equation (2.5) yields a fourth- 
order equation, L4$ = 0, for axisymmetric flow. In cylindrical co-ordinates 
(Happel & Brenner 1965), 

v2y = 0, 

and the velocity components are 

In spherical co-ordinates, L4@ = 0 is (Happel & Brenner 1965) 

and the velocity components are 

1 a$ 2, 1 a@ 
2, =--- 

r2sin8 aB '  '- rs in8 ar '  

The general problem considered is to find the stream function, $, for arbitrary 
sphere velocity, U ,  and discharge, Q (figure 1). The discharge, Q, is computed on 
any cross-section of the tube and includes both the solid and liquid components. 
I n  terms of the stream function, Q is given by 

Q = -2n[@lR=l, (2.10) 

where it assumed that $ is adjusted so that [$]R,o = 0. 
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The boundary conditions to be satisfied by $ are as follows: at  the cylinder 

Q (2.11) 
walls, R = 1, 

$=--  v z = 0 ;  
2lc. 

on the spherical surfaces, r,  = A, n = 0, ri: 1, A 2, ..., 
vz = u, VR = 0, 

where r, = [R2 + (2 - ~ L P ) ~ ] & ,  
(2.12) 

(2.13) 

and h and P are the dimensionless radius and spacing of the spheres (figure 1).  
The above boundary conditions apply in a co-ordinate system fixed with respect 
to the tube wall. It is convenient to use instead a co-ordinate system fixed with 
respect to the spheres in which the boundary conditions are as follows: 
at  the cylinder walls, R = 1, 

Q u  $ --+- vz = - u;  
27r 2 '  

on the spherical surfaces, r, = A, 

(2.14) 

(2.15) 

In (2.14) and below, Q and U are the discharge and sphere velocity in co-ordinates 
fixed with respect to the tube wall. The stream function, $, is written for co- 
ordinates moving with the spheres. Now let 

$ = $0 + $a, (2.16) 

where $o is the Poiseuille flow that would take place if there were no spheres 
present; 

where 

Po = (---) u v  R2+,R4, V 
2 2  

2Q V = - .  
7r 

(2.17) 

(2.18) 

The boundary conditions on the additional stream function, $,, are then: 

at  the cylinder walls, R = 1, 

, $ , = O ;  v =- - -=o  1 a$, 
' R aR 

on the spherical surfaces, r, = A, 
9, = -$o,  all., = -3% 

ar, ar, 

(2.19) 

(2.20) 

The problem is now to find a $, which satisfies L4@, = 0 and the boundary 
conditions (2.19) and (2.20). 

3. Solution for $ 
Solutions to L4$ = 0 which are useful in the present case are given by 

Haberman & Sayre (1958). Solutions in cylindrical co-ordinates, which are even 
and periodic in z, with period p, and which give finite velocities everywhere, are 

cn 

m = l  
@(z,R) = A0R4+B,R2+ [AmR~~(mKR)+B,R210(mKR)] C O S ~ K Z ,  (3.1) 
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where K = 27i-Ip and Il and I, are modified Bessel functions of the first kind. 
A,, B, are arbitrary constants. 

Solutions in spherical co-ordinates, which are even in z and give rise to finite 
velocities everywhere, except possibly at  infinity and at  the origin, are 

W 

$(r, 8 )  = C C;*(cos 8 )  [A,rn+Bnr-"+1+Cnrn+z+D,r-n+3], (3 .2 )  

where n = 2, 4 ,  6, . . ., and C;+(cos 8) are Gegenbauer functions of order n and 
degree - 8. A,, Bn, C,, D, are arbitrary constants. The present problem requires 
solutions which are periodic as well as even in z. Periodic functions in spherical 
co-ordinates can be constructed by replacing x in (3 .2 )  by (z  - np) and summing 
over n from -a to +a. Physically, this corresponds to placing appropriate 
singularities at the centre of each sphere in figure 1. The following two even, 
periodic solutions are constructed in this way: 

n=2 

+ {A,  R4 + B, Ra + 2 [A,RIl(mKR) 
R2 m 

m = l  
p 1 )  == r, 

n=-m 2[Rz+ (z-n,8)2]9 

+ B,R21,(mKR)] cosmKz), (3 .3)  

y ( 2 )  = 1 R2 +; .[ R2 + R2 - E]] 

I 
( 2  [R2 + x2]* n=l  [R2 + ( x  - T L , ~ ) ~ ] *  [R2 + ( x  + n,8)2]* np 

m 

m= 1 
C0R4+D0R2+ C [C,RIl(~KR)+D,R210(mKR)] C O S ~ K Z  , (3 .4)  

where A,, B,, C,, and D, are arbitrary constants. The portions of the solutions 
containing these constants will be used to satisfy the boundary conditions on 
the cylindrical wall. 

The first term of $(I) comes from C;*(~osB)r -~+~ = R2/2r3, and the first term 
of 7+W) comes from C;i(cos 8)r-2+3 = R2/2r. These two terms may be regarded 
as the terms which occur in the Stokes solution for a single sphere in an infinite 
fluid. 

The functions @(l) and $(a) are now adjusted so that each satisfies the boundary 
conditions at  the cylindrical wall, 

$ = v , = O  on R = l .  (3 .5 )  

For $(I), the boundary conditions ( 3 . 5 )  require: 

m 

for $ = 0: A,  + B, + [A, Il(mK) + B,,Io(mK)] cos mKz, 
m= 1 

4) 

for v, = 0: 4A, + 223, + C [A,mKl,(mK) 
m= 1 + B,(2I0(mK) +mKIl(mK))] cosmKz, 
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Both sides of (3.6) and (3.7) are multiplied by cos mKz and then integrated from 
- &p to &3, to derive a pair of algebraic equations for each pair of the A,, B,, 
m = 0, 1,2,  3, . . . . A similar set of equations for each of the pairs C,, D, is derived 
by applying (3.5) to $-(2). The following results are obtained by solving the several 
sets simultaneously: 

- 7  (3.8) I 2 ( m W 2  [I,(mK)K,(mK) + Io(mK) K,(mK)I 

2 (mK)2[-Io(mK)K,(mK)-I1(mK)K2(mK)] +2mKI1(mK)K,(mK) 
mK[Ii(mK) - I3mK)] - 210(mK)11(mK) 

A,  = p mK[I;(mK) - I f (mK)] - 210(mK) I1(mK) ' 

B m = P  

1 1 c - -, D - - {-2log(2zp)+2E- l}, 
"2zp "2P 

where Euler's constant 

E = lim --logN = 0.577215665. 
N+W " l  n=l n 1 (3.10) 

The modified Bessel functions of the second kind, Kn, which occur in (3.8) 
and (3.9) arise from the integrals with respect to z (see Watson 1944, p. 185). 

Next, we note that even derivatives of +(l) and @2) with respect to z generate 
additional functions, each of which satisfies L4$ = 0 and the boundary con- 
ditions (3.5) at R = 1. They are also periodic and even in z. Hence, we define 

= ~ ____ (s > 1, i = 1,2) .  
(2s - 2) ! az2s--2 

(3.11) 

The differentiations called for in (3.11) generate a complete set of functions, 
which contain singularities of all the even orders n in (3.2). The stream function 
+a is assumed to be of the form 

(3.12) 

The constants E, and FZs in (3.12) are to be determined so that the boundary 
conditions (2.20) on the spherical surfaces are satisfied. For this purpose, 
the functions defined by (3.11) are expressed in spherical co-ordinates. This is 
a critical and important step of the entire procedure. As an example of the 
procedure, consider the first series in (3.4), which may be written in the form 

W R2 R2 R2 c = - + 2 
n=--a0 2[R2+(~-@)2]8 2r3 n=l  2 ( ~ $ ) ~ [ 1  + 2 h n p + h ~ ] ~  
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where p = cosB and hn = rlnp. The sums on the right-hand side of (3.13) are 
recognized in terms of Legendre functions using the relations (Hobson 1955, 
pp. 105, 107): 

1 .3 .5  ... (2m-l)hm dmPn(p) 
(1 - 2hp + h2)m+& n = m  dpm 

= C it"------, (3.14) 

(3.15) 

where P, are Legendre polynomials of nth degree, and P," are associated Legendre 
functions ofthe mth order and nth degree. Using (3.14) and (3.15), equation (3.13) 
becomes 

m rP+1 
- - + R E  x ~ P:+,(cos 8). (3.16) 

n=l q=o (~3)"' 

The derivatives with respect to x of (3.16) are also required, and they are found 
using known recurrence relations (Hobson 1955; pp. 105, 138). The end result is 

82s-2 w R2 ___- ax- ,ZW z [ R ~ +  (z-n~)218 

c u m  1 (21+2s)! 
r~+lP?j,+,(cos8). (3.17) 

The terms containing I. and Il in (3.3) and (3.4) must also be converted to 
spherical co-ordinates. The key relation used for this purpose is (MacRobert 

(3.18) 
1948, p. 109) Rn 

n = ~  n. c. P, (cos e) = ~ Z J ,  (Y), 

where x = RcosO and y = Rsin8. Equation (3.18) and the two relations 

1, ( z )  = e-vni/2Jv (ix),  (3.19) 

Pin+, Pin-1 sin 8P2, = - ~ + - 
4 n f l  4n+l  

(3.20) 

are used to arrive at 

a2s-2 

aZ2s-2 ___ [R2& (mKR) cos ~ K z ]  

Since Il (x) = (d/dx)Io (x), equation (3.21) can also be used to derive 

6 Fluid Mech. 38 
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The sum of (3.17), (3.21) and (3 .22)  expresses $& in spherical co-ordinates. 
Similar procedures are used to convert $;:) to spherical co-ordinates. Finally, 
$0, equation (2.171, is expressed in spherical co-ordinates as 

(3.23) 

In spherical co-ordinates, the complete stream function, $, is 

where 

(3.24) 

(3.25) 

Each of the formulas in (3.25) holds for s = 1, 2, 3, ... and t = 0, 1, 2, ... 

7;: = 0. (3.26) 

with the one exception that for s = 1 and I = 0 
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It remains to satisfy the boundary conditions (2.15) on the surface of each 
sphere. Since + is periodic in z, it suffices to satisfy (2 .15)  on the sphere centred 
at the origin. This leads to two equations, each of which is a linear sum of the 
functions P&+l ( I  = 0, I ,  2, . . .). Since the P!jl+l form a linearly independent set, 
the zero boundary conditions (2.15) require the coefficient of each P!jz+l to be 
zero. This yields two infinite sets of linear, algebraic equations on the co- 
efficients E,, and F,,, which may be written in the form 

3h 28 + F, ([ - - ( - 2 log ( Z P )  + 2 E  - 1) Fv,, 
41+ 1 2P 

-~ 

6h 4h3 28 

The two sets of equations (3 .27)  and (3 .28 )  were solved simultaneously by 
successive approximations. Both sets were truncated, so that the combined sets 
contained the same number of equations as unknowns starting from a 2 x 2 
matrix up to a maximum of 16 x 16. 

4. Drag and pressure drop 
Once the coefficients E,, and F,, are computed, the stream function is com- 

pletely determined, and the physical quantities of interest, such as drag and 
pressure drop, can be computed. Since each sphere is moving at  a constant 
velocity, the equation of motion requires that the sum of all the forces on each 
sphere be zero. For the typical sphere centred at the origin, the sum of the forces, 
F,, in dimensionless form, is 

8 = F,+W,+2nrh2 (~,.,.cos/3-~7,0sin8)sin8d~ = 0, (4.1) L 
where Fe = Fd/pv2 and FA is the applied external force on each particle. 
w, = WJpvz and Wi is the weight of the particle. The integral term in (4 .1 )  

6-2  
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includes both the drag, D, due to the viscosity of the fluid, and the buoyant 
effect of the fluid. The stress components in (4.1) are 

rre is evaluated from (4.3), (3.24) and (2.9), and recurrence relations: 

(2s+ l ) (2s-  1) 
pis-1 + s = l  5 E24 - r 2 ~ + 2  

where (4.7) 

After substituting (3.24) in (4.7), the pressure is obtained by integrating both 
(4.5) and (4.6). Comparing the two results, we find: 

- 8F2- r PI - 16E2 - r Pl - 4VrPl +po, 

P P 
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where p ,  is an arbitrary constant pressure. The normal stress (4.3) is then 

85 

28-1 ( ~ - 1 ) ( 4 ~ + 6 ) + 3  (2s- 1) (2s - 2) (2s - 3) 
r 2S p2,-1- ( 4 ~ - 3 ) r ~ ~  4 8 - 3  

The stresses (4.4) and (4.9) are now substituted in (4.1). After performing the 
integration in (4.1), it is found that, although all the coefficients E,, and F2s 
enter due to rrs and rrr considered separately, the end result depends only on 
F2. The result is 

(4.10) 

where v b  = WL/pv2 and WL is the weight of the displaced fluid, i.e. the buoyant 
force. The difference (W, - wb) is the submerged weight of the particle, W,. The 
term 4nF2 is the viscous drag, D. Hence (4.10) may be written: 

Fe+ Wf = D = 47lF2. (4.11) 

At this point, using (4.8) for the pressure, it is a simple matter to compute 
the pressure drop per sphere, Ap, defined by 

(4.12) 

where R, is any radius. From the cylindrical co-ordinate form of q9, (3.3), (3.4) 
and (2.17), it  may be shown that most of the terms in (4.8) are periodic in z and 
do not contribute to Ap. The end result is 

A p  = -8F2-16E2-4V/?. (4.13) 

A mean pressure gradient, pe, is de-fined by 

8 p =-= -- (F2+ 2E2) - 4V. 
" P  P 

(4.14) 

For Poiseuille flow having the same discharge, Q ,  as the present case, but with- 
out any spheres present, the pressure gradient will be denotedp,,. In the present 

(4.15) notation, 

which is the last term of (4.14). 

pa, = - 4 v ,  
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5. Numerical results 
Computations were performed on the IBM 7094 computer system, first, to 

evaluate the coefficients E,, and Fa. Successively larger truncations of (3.27) 
and (3.28) were solved, until the values of E,, and FZ8 did not change by more 
than one place in the fifth significant figure of E, and F,. 

Values of the stream function, +, were computed next, using a grid of a t  
least 25 x 25 points, from which streamlines were drawn by interpolation. 
Velocity distributions on two cross-sections were computed using (2.9) and (3.24). 
The stress distribution on the spheres, drag and pressure drop were computed 
using (4.4), (4.9)) (4.11) and (4.13). Computations were carried out for arbitrary 
sphere velocity, U ,  and arbitrary discharge, Q = &rV. The results are reported 
for each of the three cases (i) U $. 0, V = 0, (ii) U = 0, V $. 0, (iii) zero drag. 

Figures 2 and 3 show a typical set of streamlines for the case of p = 1.5, 
h = 0.5. Figure 2(a) shows streamlines for the case of spheres moving in a fixed 
tube with zero discharge. Streamlines for the same flow, but viewed from the 
relative co-ordinate system fixed to the spheres, are shown in figure 2(b). Figure 
2(c) shows streamlines for the case o f  flow with discharge Q = g7rV past fixed 
spheres in a fixed tube. 

The streamline patterns in figure 2 are similar to those computed by Haberman 
& Sayre (1958) for a single sphere in an infinitely long tube. One new feature is 
the presence in figure 2(a) of a layer near the tube wall, which moves continuously 
in the negative z-direction. No such layer is present in the case o f  a single sphere. 

Figure 3 shows streamlines for the case of zero drag on the spheres, which 
results when a mixture of neutrally bouyant spheres and fluid is pumped through 
the tube by a pressure gradient. Figure 3(a) shows the streamlines relative to 
the fixed tube wall. Figure 3(b) shows the same flow viewed in relative co-ordin- 
ates, which move with the spheres. The most striking feature of these curves is 
that, in figure 3(a), all streamlines are nearly straight lines. Since the spheres are 
rigid, this means that all the fluid within a cylinder having the same radius as 
that of the spheres moves almost as a rigid body. This pattern is closely approxi- 
mated by the flow sometimes referred to as a ‘stacked coins’ flow (Whitmore 
1967), in which a continuous, neutrally buoyant stack of disks moves along the 
axis of the tube surrounded by a concentric layer of fluid. 

Figure 3(b)  shows that the flow between spheres, when viewed in a co-ordinate 
system fixed to them, is a vortex motion similar to that computed by Brandt 
& Bugliarello (1965) in the spaces between disks, which extend to the full 
diameter of the tube. 

The drag on each sphere is given by (4. 1 I), in which the coefficient l?! is in 
general of the form 

where FZu and F,, are coefficients computed when E,  and Fa are found. I n  
dimensional form, the drag D’ is 

Fz = Fzu U + Fzv V ,  (5.1) 

D’ = 6npha( - K ,  U‘ + K ,  V‘), ( 5 . 2 )  

where (5 .3 )  
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(a) u * 0, v = 0 

I - 0.25 I 

(c) u = 0, V + 0 

FIGURE 2. Streamlines and velocity profiles for ,!? = 1.5, h = 0.5. (a )  Spheres moving 
( U  $; 0, V = 0). Streamlines shown in co-ordinates fixed to the cylinder. ( b )  Spheres 
moving ( U  += 0, V = 0). Streamlines shown in co-ordinates moving with the spheres. 
(c )  Spheres and cylinder fixed ( U  = 0, V + 0). Streamlines shown for discharge Q = inV. 
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The drag on a single sphere moving with a velocity U’ in an infinite fluid 
whose velocity is V’ a t  infinity is Stokes’s drag, 

D’ = 6npha( - U’ + V’) .  (5.4) 
K O  and K ,  in (5.2) are normalized drag coefficients equal to  unity for Stokes’s 
drag. 

-0.25 

-0.20 

-0.15 I 

I + 0.168 
+0.10 

FIGURE 3. Streamlines and velocity profiles for p = 1.5, h = 0.5, zero drag case. 
(a )  Streamlines shown in co-ordinates fixed to the cylinder. ( b )  Streamlines shown in 
co-ordinates moving with the spheres. 

Table 1 gives the coefficients K ,  computed for a line of spheres, except the 
last column, which contains values for a single sphere given by Haberman & 
Sayre (1958). The results of the present computations for ,8 = 40 agree with those 
of Haberman & Sayre (which correspond to ,8 = 00) to three or four significant 
figures for most cases. 
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A 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

p = 2h 

0.473 
0.8721 
1.531 
2.719 
5.042 

10.14 
23.60 
72-69 

430.0 

p = 1.0 

1.225 
1.559 
2.096 
3.075 
5.042 
- 
- 
- 
- 

T 

Haberman 
p = 1.4 p = 2.0 p = 4.0 p = 40 & Sayre 

1.258 1.263 1.263 1.263 1.263 
1.660 1.679 1.680 1.680 1.680 
2.317 2-368 2.370 2.370 2.371 
3.463 3.585 3.591 3.592 3.596 
5.675 5.929 5.947 5.949 5.970 

10.56 11.04 11.09 11.10 11-14 
23.60 24.52 24.67 24.70 24.96 
- 73.90 74.60 74.97 73.56 
- 440.0 460.0 - - 

BLE 1. Drag coefficient, Ku 

Haber man 
p = 2h p = 1.0 p = 1.4 /l = 2.0 p = 4.0 /3 = 40 & Sayre h 

0.1 0-469 1.216 1-249 1.255 1.255 1.255 1.255 
0.2 0.8433 1.517 1.616 1.634 a1635 1.635 1.635 
0-3 1.422 1.964 2.177 2.227 2.229 2.229 2.231 
0.4 2.393 2.723 3.092 3.210 3.216 3,216 3.218 
0-5 4-158 4.158 4.735 4.977 4.995 4.996 5.004 
0.6 7.750 - 8.121 8.562 8.613 8.617 8.651 
0.7 16.54 - 16-54 17.34 17-47 17-49 17.67 

47.30 0.8 46.12 - - 47.06 47.58 47.81 
0.9 250.0 - - 250.0 260.0 - - 

TABLE 2. Drag coefficient, KV 

p = 2h p = 1.0 p = 1.4 J3 = 2.0 /3 = 4-0 /3 = 40 

0.1 1.983 1.987 1.987 1.987 1.987 1.987 
0.2 1.934 1.944 1.947 1.947 1.947 1.947 
0.3 1.857 1.873 1.879 1.881 1.881 1.881 
0.4 1.760 1.771 1.786 1.791 1.791 1.791 
0.5 1.649 1.649 1.669 1.679 1.680 1-680 
0.6 1.528 - 1.538 1-551 1.553 1.553 
0.7 1 *40 1 - 1.401 1.414 1.416 1.416 
0.8 1.271 - - 1.274 1.276 1.276 
0.9 1.14 - - 1.14 1.14 - 

TABLE 3. Ratio of 2UIV for zero drag 

Happel & Byrne 
& 

h p = 2h p = 1.0 /l = 1.4 /3 = 2.0 p = 4.0 /3 = 40.0 p = 1.4 p = 40.0 

0.1 0.558 1.450 1.488 1.496 1.496 1.496 1.489 1.496 
0.2 1.959 3.543 3.776 3.821 3.822 3.822 3.774 3.819 
0.3 4.769 6.641 7.384 7.560 7.566 7.566 7.367 7.543 
0.4 10.18 11.65 13.33 13.88 13.90 13.91 13'26 13.79 
0.5 20.77 20.77 23.94 25.33 25.43 25.44 23.68 24.98 
0-6 43.18 - 45.54 48.49 48.84 48.86 44.44 47.15 
0.7 98.62 - 98.62 104.5 105.6 105.7 93.21 98.94 
0-8 283.9 - 
0.9 1500 - - 1500 1600 - - 

- 291.3 295.2 296.6 - 263-1 - 

TABLE 4. Pressure drop coefficient, PV 
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The effect of neighbouring spheres on the drag exerted on each sphere is small, 
if the spacing is greater than about one tube diameter (/3 > 2). The data in table 1 
are plotted in figure 4. It is seen that, the closer the spheres, the less becomes the 
drag per sphere. For large spheres, the effect of spacing is less pronounced. 
Table 2 and figure 5 show similar results for K,; the qualitative results are the 
same as for K,. 

A 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

p = 2h 

0.563 
2.024 
5.118 

11.49 
24.95 
55.80 

138.9 
442-8 

2700 

p = 1.0 

1.460 
3.640 
7.069 

13.07 
24-95 

p = 1.4 

1.499 
3.877 
7.837 

14.84 
28.41 
58.47 

138.9 

p = 2.0 

1.506 
3.922 
8.018 

15.41 
29.86 
61.65 

145.6 
451.7 

2700 

/3 = 4.0 

1.506 
3.924 
8.024 

15.44 
29.97 
62-01 

146.8 
456.8 

2800 

p = 40 

1.506 
3.924 
8.025 

15.44 
29.98 
62.04 

147.0 
459.0 
- 

TABLE 5. Pressure drop coefficient, Pu 

Happel & Byrne 
7- 
/3 = 1.4 /3 = 40 

1-499 1.506 
3.877 3.923 
7.839 8.021 

14.85 15.40 
28.38 29.74 
57.80 60.72 

133.0 139.7 
- 412.7 
- - 

h 

0.1 
0.2 
0.3 
0-4 
0.5 
0-6 
0.7 
0.8 
0.9 

p = 2h p = 1.0 p = 1.4 p = 2.0 p = 4.0 p = 40.0 

0-730 x 0.1995 x 0.1427 x 0.1016 x 0.501 x 0.501 x 
0.1199 x lo-' 0.6347 x 0.453 x 0.320 x loT3 0.160 x 0.166 x 
0.6177 x 0.4617 x lo-' 0.3451 x lo-' 0.2438 x lo-' 0.1220 x lo-' 0.1220 x 
0.01953 0.01775 0.01430 0.999 x lo-' 0.5199 x lo-' 0.5199 x lo-' 
0.04933 0.04933 0.04245 0 * 0 3 2 3 5 0.01631 0.001631 
0.112 - 0.1039 0.0840 0.0428 0.00429 
0.234 - 0.2339 0.1961 0.103 0.0103 
0-500 0.455 0.242 0.0243 
1.3 1.2 0.64 

- - 

- - - 

TABLE 6. Pressure gradient coefficient, Gv0, for zero drag 

The above results are utilized for the case of zero drag for neutrally buoyant 
spheres by setting D' (5.2) equal to zero, and solving for U in terms of V .  The 
ratio 2UlV is the ratio of the velocity of the spheres to the mean flow velocity 
of the mixture. Numerical values are given in table 3. Small spheres travel at  
nearly twice the mean velocity, but as h increases the sphere velocity approaches 
the mean velocity from above. 

The pressure drop per sphere and the pressure gradient are given, in general, 
by (4.13) and (4.14), in which F, and E ,  are each linear in U and in V .  Hence, in 
dimensional form, the total pressure drop per sphere may be written 

and the total pressure gradient in dimensional form may be written: 

4P 4p V' 
PL=aa(-  V'G,+U'G,)--+pg, a2 



Viscous flow in a cylindrical tube 91 

where Pv, P,, G ,  and G ,  are coefficients derived from the E, and F, values 
computed previously. The term (4pV’/a2) in (5 .6 )  is the Poiseuille flow pressure 
gradient; likewise, the term (4,uV’Pla) in (5.5) is the pressure drop in a length pa 
in Poiseuille flow. The terms involving g are the hydrostatic effects. Hence, in 
(5.6)) the coefficients G,and G ,  are a measure of the additional pressure gradient 
due to the presence of the spheres. Similarly, Pv and Pv are a measure of the 
additional pressure drop, due to the spheres, in a length pa. 

Diameter ratio, h 

FIGURE 4. Drag coefficient, Ku. 

Table 4 gives the pressure drop coefficient Pv. The last two columns are the 
results computed from the following approximate formula, which is given by 
Happel & Byrne (1954): 2 0 ’  

?la2 
ApA = ~ [l - +A2]. (5.7) 

The last two columns of table 4 are computed using (5.7)) with the drag D’ 
based on the coefficients in table 2. The approximate results are good for h 6 0.5. 

Table 5 gives the computed values of Pu. Figures 6 and 7 show (1 + P,) and 
(1 + P,) as functions of A. It may be seen that the qualitative trends in the pres- 
sure drop coefficients are the same as for the drag coefficients discussed above. 
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In the case of zero drag, U depends on V ,  as shown in table 3. Hence in dimen- 
sional form the pressure gradient may be written 

where G,, is a coefficient which is a measure of the additional pressure gradient 
due to the presence of the spheres compared to that for Poiseuille flow having 
the same discharge. Numerical values of G ,  are given in table 6 and plotted 
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Sphere spacing, p 
FIGURE 5. Drag coefficient, Kv. 

in figure 8. These show that the additional pressure gradient is generally small, 
and is less than 50% over that for Poiseuille flow for h less than 0.8. The upper 
curve in figure 8 shows the comparable coefficient, G,,, for the stacked coins 
model (Whitmore 1967), which in the present termnology is 

The results show that the additional pressure drop for the case of spheres 
touching is about 75% of that for the stacked coins model, when the coins and 
spheres have the same diameter. 
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The additional pressure drop per sphere in the zero drag case is 

93 

Ap' = - p  a V'P YO, (5.10) 

where values of the coefficient Pv0 are given in table 7. Again, there is little 
interaction between spheres for /3 > 2. 

0 

h 
0.1 
0-2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

p = 2h p = 1.0 f l  = 1.4 /3 = 2.0 p = 4.0 /3 = 40.0 

0.584 x 0.789 x 0.799 x 0,800 x 0.801 x 0.801 x 
0.1919 x lo-' 0.2359 x 0.2559 x 0.2562 x 0.2562 x lo-' 0.2562 x lo-' 
0.01482 0.01847 0-01932 0.01951 0.01951 0.01951 
0.06249 0.07100 0.08010 0.08296 0.08318 0.08319 
0.1973 0.1973 0.2377 0.2588 0.2609 0.2609 
0.537 - 
1.310 - 
3.20 - 
9.3 - - 9.6 10.0 - 

0.582 0.672 0.685 0.687 
1.31 1.57 1.65 1.65 
- 3.64 3.81 3.9 

TABLE 7. Pressure drop coefficient, Pvo, for zero drag 
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The results above have been developed and presented as if the particle velocity, 
U ,  and fluid discharge, Q (or V ) ,  were given and the drag and pressure drop 
were to be found. The results above may also be used to find U and Q for particles 
of given size, spacing and density, assuming that the fluid properties, gravi- 
tational constant, pressure gradient and applied external force are also given. 
From the tabulated results and the particle size and spacing, the coefficients 
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FIGURE 7. Pressure drop coefficient, 1 +Pu.  

K,, K ,  in (5.2)) and G,, G, in (5.6), may be determined. Then, equating the 
drag in (5.2) to the known applied external force and the weight of the particle 
in fluid, and substituting the known pressure gradient in (5.6)) gives a pair of 
equations, which may be solved for U and V .  

6. Conclusion 
With respect to the problem of capillary blood flow, the present study suggests 

two general conclusions. First, if the particles (red blood cells) are spaced more 
than one tube diameter apart, their interaction is negligible. Secondly, if the 
tube diameter is at  least 20 % greater than the particle diameter, the additional 



Viscous flow in a cylindrical tube 95 

pressure drop will not be greater than about 50 yo of the Poiseuille pressure drop 
of the suspending medium (blood plasma) alone. This is an interesting conclusion, 
because the viscosity of blood is generally at  least twice that of the plasma alone 
in shear viscometer tests and in large tubes (Gregersen 1967). This corroborates 
experimental measurements in fine tubes (Haynes 1961), which show that the 
effective viscosity of blood is less in capillaries than in larger vessels. 

0 0.2 0.4 0 6  0.8 1.0 

Diameter ratio, h 

FIGURE 8. Pressure gradient coefficient, Gvo, for the case of zero drag. Solid curves 
are computed results for a line of spheres. Dotted curve is for the stacked coins mOdd 
Dashed curve (/3 = 2h) is for a line of spheres which are touching. 

This paper was based on Wang (1967). The work was supported by the Office 
of Naval Research, Project NR 062-393. 
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